High-speed atomic force microscopy in slow motion--understanding cantilever behaviour at high scan velocities.

نویسندگان

  • O D Payton
  • L Picco
  • D Robert
  • A Raman
  • M E Homer
  • A R Champneys
  • M J Miles
چکیده

Using scanning laser Doppler vibrometer we have identified sources of noise in contact mode high-speed atomic force microscope images and the cantilever dynamics that cause them. By analysing reconstructed animations of the entire cantilever passing over various surfaces, we identified higher eigenmode oscillations along the cantilever as the cause of the image artefacts. We demonstrate that these can be removed by monitoring the displacement rather than deflection of the tip of the cantilever. We compare deflection and displacement detection methods whilst imaging a calibration grid at high speed and show the significant advantage of imaging using displacement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Method of mechanical holding of cantilever chip for tip-scan high-speed atomic force microscope.

In tip-scan atomic force microscopy (AFM) that scans a cantilever chip in the three dimensions, the chip body is held on the Z-scanner with a holder. However, this holding is not easy for high-speed (HS) AFM because the holder that should have a small mass has to be able to clamp the cantilever chip firmly without deteriorating the Z-scanner's fast performance, and because repeated exchange of ...

متن کامل

Measurements of dynamic forces between drops with the AFM: novel considerations in comparisons between experiment and theory

Dynamic forces between a deformable tetradecane oil drop (radius of curvature z 25 mm) anchored on the cantilever of the Atomic Force Microscope (AFM) and similar oil drops (radii of curvature 80 to 500 mm) on the substrate in aqueous electrolyte with added sodium dodecyl sulfate surfactant have been studied. Measurements were made over a range of scan rates that span the range of Brownian velo...

متن کامل

Tip-sample distance control using photothermal actuation of a small cantilever for high-speed atomic force microscopy.

We have applied photothermal bending of a cantilever induced by an intensity-modulated infrared laser to control the tip-surface distance in atomic force microscopy. The slow response of the photothermal expansion effect is eliminated by inverse transfer function compensation. By regulating the laser power and regulating the cantilever deflection, the tip-sample distance is controlled; this ena...

متن کامل

Components for high speed atomic force microscopy.

Many applications in materials science, life science and process control would benefit from atomic force microscopes (AFM) with higher scan speeds. To achieve this, the performance of many of the AFM components has to be increased. In this work, we focus on the cantilever sensor, the scanning unit and the data acquisition. We manufactured 10 microm wide cantilevers which combine high resonance ...

متن کامل

Dynamic proportional-integral-differential controller for high-speed atomic force microscopy

In tapping mode atomic force microscopy, the cantilever tip intermittently taps the sample as the tip scans over the surface. This mode is suitable for imaging fragile samples such as biological macromolecules, because vertical oscillation of the cantilever reduces lateral forces between the tip and sample. However, the tapping force vertical force is not necessarily weak enough for delicate sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 23 20  شماره 

صفحات  -

تاریخ انتشار 2012